Preparation of nitrogen-rich α -uranium sesquinitride

Masanobu Miyake, Masayuki Hirota, Shinichiro Matsuyama and Masahiro Katsura Department of Nuclear Engineering, Faculty of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565 (Japan)

Abstract

Reactions of massive U with static NH_3 were carried out at 300 and 350 °C. The variations in the partial pressures of NH_3 , N_2 and H_2 with time were investigated. The experimental results are discussed in terms of the nitrogen activity of the gas phase.

1. Introduction

Recently, Katsura and coworkers [1-3] have prepared N-rich α -U₂N_{3+x} with N:U ratios of 1.80 or more by treating U with unstable NH₃ which had an extremely high nitrogen activity a_N . They claimed that the practically attainable N:U ratio for α -U₂N_{3+x} may be about 1.90. They also suggested that the slope of the P_{N_2} -N:U isotherm becomes steeper with decreasing temperature, and that N-rich α -U₂N_{3+x} can be in equilibrium with N₂ at 100 kPa or less, from a thermodynamical point of view. To examine these points, reactions of U with NH₃ were performed at 300 and 350 °C in a closed system. The reaction processes are discussed in terms of a_N .

2. Experimental details

The experimental apparatus used in this work consisted of a resistance furnace, a vacuum system, a capacitance manometer and a gas chromatograph system. The nominal impurities of the U ingot were given in a previous paper [4]. NH₃ (99.998%) was supplied from a commercial gas cylinder into the reaction system, through a stainless steel capillary without further purification. A quartz boat containing metallic U (about 2.4 g) was placed in the center of the reaction tube and the system was evacuated to 4×10^{-6} Pa at room temperature. Then, NH₃ gas was admitted into the tube up to a desired pressure. After raising the temperature to 300 or 350 °C, the total pressure P_{total} , P_{N_2} , and $P_{\rm NH_3}$ and $P_{\rm N_2}$ were measured as functions of time. $P_{\rm H_2}$ was calculated by the relationship $P_{\rm H_2}$ = $P_{\text{total}} - P_{\text{NH}_3} - P_{\text{N}_2}$, since P_{NH_3} could be much more accurately determined by the gas chromatograph measurement than could P_{H_2} . The N:U ratio of α -U₂N_{3+x} was determined from the relationship between the lattice parameter value and the N:U ratio [5].

3. Results and discussion

As often claimed, NH_3 is considered to be kinetically favorable as a nitriding agent compared with N_2 . Two points should be noted: (i) the reaction period necessary to produce a nitride is reduced, and (ii) the nitride formation occurs at relatively low temperatures compared with the case where N_2 gas is used. These kinetic effects brought about by the use of NH_3 are regarded as resulting from the high instability of NH_3 .

When NH₃ gas is introduced into a quartz vessel up to a desired pressure less than 100 kPa and the system is kept at a temperature of 350 °C or less, the decomposition of NH₃ can be suppressed almost completely, and unstable NH₃ molecules can exist in the gas phase over a long period of time. Under these conditions, if a given amount of U metal is placed in the vessel, NH₃ is continuously consumed and H₂ is continuously accumulated in the system, owing to the formation of α -U₂N_{3+r} according to

 $2U + (3+x)NH_3 = U_2N_{3+x} + (9+3x/2)H_2$

The experimental results of the reaction of U chip with static NH₃ carried out at 300 and 350 °C are given in Figs. 1 and 2, respectively, where the variations in P_{total} , P_{NH_3} , P_{H_2} , and P_{N_2} with time are shown graphically. The pressure variation curves can be roughly divided into three regions, as shown in Figs. 1 and 2. In regions I and II, P_{total} and P_{H_2} increase rapidly with time, while P_{NH_3} decreases rapidly. Although a slow increase in P_{N_2} is observed in region I, P_{N_2} is kept almost constant,

Fig. 1. Variations in P_{total} , P_{NH_3} , P_{H_2} and P_{N_2} with time during the reaction of massive U with static NH₃ at 300 °C.

Fig. 2. Variations in P_{total} , P_{NH3} , P_{H2} and P_{N2} with time during the reactions of massive U with static NH₃ at 350 °C.

at least within the experimental errors. In region III, both $P_{\rm H_2}$ and $P_{\rm N_2}$ continue to increase slowly, and $P_{\rm NH_3}$ continues to decrease gradually.

Katsura [6] has demonstrated that, even for the unstable mixtures of NH₃, H₂ and N₂, the relationship $a_{\rm N} = (1/K_{\rm P})(P_{\rm NH_3}/P_{\rm H_2}^{3/2})$ is valid, where $K_{\rm P}$ is the equilibrium constant for

$$\frac{1}{2}N_2 + \frac{3}{2}H_2 = NH_3$$

and $P_{\rm NH_3}$ and $P_{\rm H_2}$ are expressed in atmospheric units. Using this equation and the results in Figs. 1 and 2, the value of $a_{\rm N}$ can be calculated as a function of time, as shown graphically in Fig. 3. Extremely high $a_{\rm N}$ values of the order of 10^3-10^4 were obtained in the early stage of each run ($a_{\rm N} = 1$ corresponds to $P_{\rm N_2} = 100$ kPa). When a metallic U specimen is brought into contact with NH₃, the following three reactions are possible:

$$2U + (3+x)NH_3(g) = U_2N_{3+x} + \frac{3}{2}(3+x)H_2$$
(1)

$$U + NH_3(g) = UH_3 + \frac{1}{2}N_2(g)$$
(2)

$$NH_3(g) = \frac{1}{2}N_2(g) + \frac{3}{2}H_2(g)$$
(3)

The decrease in $P_{\rm NH_3}$ and increase in $P_{\rm H_2}$ observed in regions I and II may be ascribed to the formation of α -U₂N_{3+x} by reaction (1). It is known that the reaction of massive U with N₂ at such low temperatures as 300 °C proceeds only to a negligible extent or not at all during a reaction period of 1–2 weeks. Finely powdered U prepared by the thermal decomposition of powdered UH₃ was exposed to N₂ with a pressure of 25 kPa (190 Torr) at 300 °C for 65 h in the same apparatus used for the reaction of U and static NH₃. No pressure change was observed during the run, and

Fig. 3. Nitrogen activity a_N as a function of reaction time during the reaction of massive U with static NH₃ at 300 °C (\oplus ; evaluated from the data in Fig. 1) and at 350 °C (\bigcirc ; evaluated from the data in Fig. 2).

Temperature (°C)	Time (h)	Pressures (kPa) at the beginning of the run			Pressures (kPa) at the end of the run			N:U ratio of α -U ₂ N _{3+x}
		P _{NH3}	P _{H2}	P _{N2}	P _{NH3}	P _{H2}	P _{N2}	
300	69	66.7	0	0	3.3	89.0	4.5	1.80–1.83
350	24	66.7	0	0	0.8	94.2	13.7	1.80-1.83

TABLE 1. Experimental conditions and N:U ratio of α -U₂N_{3+x}

X-ray diffraction of the solid sample revealed only the existence of U. This result, which indicates that even the reaction of powdered U with N₂ does not proceed to any appreciable extent at 300 °C, contrasts sharply with the reaction of massive U with static NH₃ at 300 or 350 °C, which results in the formation of α -U₂N_{3+x}. The fact that the conversion of massive U to α -U₂N_{3+x} at such a low temperature as 300 or 350 °C by the action of NH₃ must be ascribed to an extremely high nitrogen activity a_N realized in the early stage of the run, which arises from the high instability of NH₃.

The gradual increases in P_{H_2} and P_{N_2} and slow decrease in P_{NH_3} may be attributed to the dissociation of NH₃ into N₂ and H₂, suggesting that U₂N_{3+x} can act as a catalyst for NH₃ decomposition. The decomposition proceeds more rapidly at 350 °C than at 300 °C. (How rapidly NH₃ decomposition proceeds depends on the amount of α -U₂N_{3+x} and, as a consequence, on the amount of U sample initially loaded.) Although why the plateaus (region II) appear cannot be explained well at present, it may be possible that N₂ is evolved from N-rich α -U₂N_{3+x} and this cancels the increase in P_{N_2} , according to reaction (3).

The N:U ratios of α -U₂N_{3+x} obtained at 300 and 350 °C in the present work range from 1.80 to 1.83 (see Table 1), although a_N in the gas phase in the final stage of the run is less than unity. This result suggests that α -U₂N_{3+x} with N:U \ge 1.80 may be in equilibrium

with N₂ at 100 kPa or less, and that the slope of the P_{N_2} -N:U ratio isotherm at 300 or 350 °C may be very steep.

4. Concluding remarks

From the time variations in $P_{\rm NH_3}$, $P_{\rm H_2}$ and $P_{\rm N_2}$ during the reactions of massive U with static NH₃ at 300 and 350 °C, the nitrogen activity $a_{\rm N}$ was evaluated as a function of time. When U metal is exposed to NH₃, a large nitriding driving force prevails between the gas phase and the metal, resulting in a rapid nitriding reaction, even at such low temperatures as 300 and 350 °C. As the reaction proceeds, $a_{\rm N}$ continuously decreases until it is less than unity. In this state, α - U_2N_{3+x} may be regarded as being in equilibrium with the gas phase, with $a_{\rm N}$ less than unity.

References

- 1 M. Katsura, M. Miyake and H. Serizawa, J. Alloys Comp., 193 (1993) 101.
- 2 T. Urabe, K. Takahashi, M. Katsura and M. Miyake, J. Alloys Comp., 193 (1993) 122.
- 3 M. Katsura and H. Serizawa, J. Alloys Comp., 196 (1993) 191.
- 4 M. Katsura and H. Serizawa, J. Alloys Comp., 187 (1992) 389.
- 5 H. Tagawa, J. Atom. Energy Soc., 13 (1971) 267.
- 6 M. Katsura, J. Alloys Comp., 182 (1992) 91.